Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Clin Kidney J ; 17(1): sfad262, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186869

RESUMO

Backgound: Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease, and leads to a steady loss of kidney function in adulthood. The variable course of the disease makes it necessary to identify the patients with rapid disease progression who will benefit the most from targeted therapies and interventions. Currently, magnetic resonance imaging-based volumetry of the kidney is the most commonly used tool for this purpose. Biomarkers that can be easily and quantitatively determined, which allow a prediction of the loss of kidney function, have not yet been established in clinical practice. The glycoprotein Dickkopf 3 (DKK3) which is secreted in the renal tubular epithelium upon stress and contributes to tubulointerstitial fibrosis via the Wnt signaling pathway, was recently described as a biomarker for estimating risk of kidney function loss, but has not been investigated for ADPKD. This study aimed to obtain a first insight into whether DKK3 may indeed improve outcome prediction in ADPKD in the future. Methods: In 184 ADPKD patients from the AD(H)PKD registry and 47 healthy controls, the urinary DKK3 (uDKK3) levels were determined using ELISA. Multiple linear regression was used to examine the potential of these values in outcome prediction. Results: ADPKD patients showed significantly higher uDKK3 values compared with the controls (mean 1970 ± 5287 vs 112 ± 134.7 pg/mg creatinine). Furthermore, there was a steady increase in uDKK3 with an increase in the Mayo class (A/B 1262 ± 2315 vs class D/E 3104 ± 7627 pg/mg creatinine), the best-established biomarker of progression in ADPKD. uDKK3 also correlated with estimated glomerular filtration rate (eGFR). Patients with PKD1 mutations show higher uDKK3 levels compared with PKD2 patients (PKD1: 2304 ± 5119; PKD2: 506.6 ± 526.8 pg/mg creatinine). Univariate linear regression showed uDKK3 as a significant predictor of future eGFR slope estimation. In multiple linear regression this effect was not significant in models also containing height-adjusted total kidney volume and/or eGFR. However, adding both copeptin levels and the interaction term between copeptin and uDKK3 to the model resulted in a significant predictive value of all these three variables and the highest R2 of all models examined (∼0.5). Conclusion: uDKK3 shows a clear correlation with the Mayo classification in patients with ADPKD. uDKK3 levels correlated with kidney function, which could indicate that uDKK3 also predicts a disproportionate loss of renal function in this collective. Interestingly, we found an interaction between copeptin and uDKK3 in our prediction models and the best model containing both variables and their interaction term resulted in a fairly good explanation of variance in eGFR slope compared with previous models. Considering the limited number of patients in these analyses, future studies will be required to confirm the results. Nonetheless, uDKK3 appears to be an attractive candidate to improve outcome prediction of ADPKD in the future.

2.
J Am Soc Nephrol ; 35(3): 321-334, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38073039

RESUMO

SIGNIFICANCE STATEMENT: There is an unmet need for biomarkers of disease progression in autosomal dominant polycystic kidney disease (ADPKD). This study investigated urinary extracellular vesicles (uEVs) as a source of such biomarkers. Proteomic analysis of uEVs identified matrix metalloproteinase 7 (MMP-7) as a biomarker predictive of rapid disease progression. In validation studies, MMP-7 was predictive in uEVs but not in whole urine, possibly because uEVs are primarily secreted by tubular epithelial cells. Indeed, single-nucleus RNA sequencing showed that MMP-7 was especially increased in proximal tubule and thick ascending limb cells, which were further characterized by a profibrotic phenotype. Together, these data suggest that MMP-7 is a biologically plausible and promising uEV biomarker for rapid disease progression in ADPKD. BACKGROUND: In ADPKD, there is an unmet need for early markers of rapid disease progression to facilitate counseling and selection for kidney-protective therapy. Our aim was to identify markers for rapid disease progression in uEVs. METHODS: Six paired case-control groups ( n =10-59/group) of cases with rapid disease progression and controls with stable disease were formed from two independent ADPKD cohorts, with matching by age, sex, total kidney volume, and genetic variant. Candidate uEV biomarkers were identified by mass spectrometry and further analyzed using immunoblotting and an ELISA. Single-nucleus RNA sequencing of healthy and ADPKD tissue was used to identify the cellular origin of the uEV biomarker. RESULTS: In the discovery proteomics experiments, the protein abundance of MMP-7 was significantly higher in uEVs of patients with rapid disease progression compared with stable disease. In the validation groups, a significant >2-fold increase in uEV-MMP-7 in patients with rapid disease progression was confirmed using immunoblotting. By contrast, no significant difference in MMP-7 was found in whole urine using ELISA. Compared with healthy kidney tissue, ADPKD tissue had significantly higher MMP-7 expression in proximal tubule and thick ascending limb cells with a profibrotic phenotype. CONCLUSIONS: Among patients with ADPKD, rapid disease progressors have higher uEV-associated MMP-7. Our findings also suggest that MMP-7 is a biologically plausible biomarker for more rapid disease progression.


Assuntos
Vesículas Extracelulares , Rim Policístico Autossômico Dominante , Humanos , Biomarcadores , Progressão da Doença , Metaloproteinase 7 da Matriz , Rim Policístico Autossômico Dominante/genética , Proteômica
3.
Clin Kidney J ; 16(11): 2194-2204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37915893

RESUMO

Background: The identification of new biomarkers in autosomal-dominant polycystic kidney disease (ADPKD) is crucial to improve and simplify prognostic assessment as a basis for patient selection for targeted therapies. Post hoc analyses of the TEMPO 3:4 study indicated that copeptin could be one of those biomarkers. Methods: Copeptin was tested in serum samples from patients of the AD(H)PKD study. Serum copeptin levels were measured using a time-resolved amplified cryptate emission (TRACE)-based assay. In total, we collected 711 values from 389 patients without tolvaptan treatment and a total of 243 values (of which 64 were pre-tolvaptan) from 94 patients on tolvaptan. These were associated with rapid progression and disease-causing gene variants and their predictive capacity tested and compared with the Mayo Classification. Results: As expected, copeptin levels showed a significant negative correlation with estimated glomerular filtration rate (eGFR). Measurements on tolvaptan showed significantly higher copeptin levels (9.871 pmol/L vs 23.90 pmol/L at 90/30 mg; P < .0001) in all chronic kidney disease stages. Linear regression models (n = 133) show that copeptin is an independent predictor of eGFR slope. A clinical model (including eGFR, age, gender, copeptin) was nearly as good (R2 = 0.1196) as our optimal model (including height-adjusted total kidney volume, eGFR, copeptin, R2 = 0.1256). Adding copeptin to the Mayo model improved future eGFR estimation. Conclusion: Copeptin levels are associated with kidney function and independently explained future eGFR slopes. As expected, treatment with tolvaptan strongly increases copeptin levels.

4.
Cell Rep Med ; 4(11): 101283, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935200

RESUMO

Ketogenic dietary interventions (KDIs) are beneficial in animal models of autosomal-dominant polycystic kidney disease (ADPKD). KETO-ADPKD, an exploratory, randomized, controlled trial, is intended to provide clinical translation of these findings (NCT04680780). Sixty-six patients were randomized to a KDI arm (ketogenic diet [KD] or water fasting [WF]) or the control group. Both interventions induce significant ketogenesis on the basis of blood and breath acetone measurements. Ninety-five percent (KD) and 85% (WF) report the diet as feasible. KD leads to significant reductions in body fat and liver volume. Additionally, KD is associated with reduced kidney volume (not reaching statistical significance). Interestingly, the KD group exhibits improved kidney function at the end of treatment, while the control and WF groups show a progressive decline, as is typical in ADPKD. Safety-relevant events are largely mild, expected (initial flu-like symptoms associated with KD), and transient. Safety assessment is complemented by nuclear magnetic resonance (NMR) lipid profile analyses.


Assuntos
Dieta Cetogênica , Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/tratamento farmacológico , Estudos de Viabilidade , Fígado , Imageamento por Ressonância Magnética
5.
Kidney Int Rep ; 8(8): 1616-1626, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37547529

RESUMO

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent genetic cause of kidney failure. Tolvaptan, a vasopressin 2 receptor antagonist, is the first drug with proven disease-modifying activity. Long-term treatment adherence is crucial, but a considerable fraction of patients discontinue treatment, because of aquaretic side effects. Methods: Twenty-four-hour urine was collected in 75 patients with ADPKD during up-titration of tolvaptan and, in combination with clinical characteristics, examined to identify factors influencing urine volume. Patient-reported outcomes were analyzed using the Short Form-12 (SF-12) and patient-reported outcomes questionnaires reporting micturition frequency and burden of urine volume. Results: Initiation of therapy led to a large increase in urine volume followed by only minor further increase during up-dosing. Younger patients and patients with better kidney function experienced a larger relative rise. Twenty-four-hour urine osmolality dropped by about 50% after therapy initiation independently of dose, with a considerable proportion of patients achieving adequate suppression. Sodium and potassium intake turned out to be the only significant modifiable factors for urine volume after multivariate linear regression models, whereas age and weight could be identified as non-modifiable factors. No change in quality of life (QoL) was detected in relation to treatment or urine volume using SF-12 questionnaires, a finding that was further supported by the results of the patient-reported outcomes assessment. Conclusion: This study provides an in-detail analysis of factors associated with the degree of polyuria on tolvaptan and puts them into the context of QoL. These findings will contribute to optimized patient counseling regarding this treatment option in ADPKD.

6.
Kidney Int Rep ; 8(3): 455-466, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36938073

RESUMO

Introduction: Autosomal-dominant polycystic kidney disease (ADPKD) is the most common genetic cause of kidney failure. Because of the heterogeneity in disease progression in ADPKD, parameters predicting future outcome are important. The disease-causing genetic variant is one of these parameters. Methods: A multiplex polymerase chain reaction (PCR)-based panel (MPP) was established for analysis of 6 polycystic kidney disease (PKD) genes (PKD1, PKD2, HNF1B, GANAB, DZIP1L, and PKHD1) in 441 patients with ADPKD. Selected patients were additionally sequenced using Sanger sequencing or a custom enrichment-based gene panel. Results were combined with clinical characteristics to assess the impact of genetic data on clinical decision-making. Variants of unclear significance (VUS) were considered diagnostic based on a classic ADPKD clinical phenotype. Results: Using the MPP, disease-causing variants were detected in 65.3% of patients. Sanger sequencing and the custom gene panel in 32 patients who were MPP-negative revealed 20 variants missed by MPP, (estimated overall false negative rate 24.6%, false-positive rate 9.4%). Combining clinical and genetic data revealed that knowledge of the genotype could have impacted the treatment decision in 8.2% of patients with a molecular genetic diagnosis. Sequencing only the PKD1 pseudogene homologous region in MPP-negative patients resulted in an acceptable false-negative rate of 3.28%. Conclusion: The MPP yields rapid genotype information at lower costs and allows for simple extension of the panel for new disease genes. Additional sequencing of the PKD1 pseudogene homologous region is required in negative cases. Access to genotype information even in settings with limited resources is important to allow for optimal patient counseling in ADPKD.

8.
Clin Kidney J ; 16(2): 384-393, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36755834

RESUMO

Background: Vascular abnormalities and endothelial dysfunction are part of the spectrum of autosomal dominant polycystic kidney disease (ADPKD). The mechanisms behind these manifestations, including potential effects on the endothelial surface layer (ESL) and glycocalyx integrity, remain unknown. Methods: Forty-five ambulatory adult patients with ADPKD were enrolled in this prospective, observational, cross-sectional, single-centre study. Fifty-one healthy volunteers served as a control group. All participants underwent real-time microvascular perfusion measurements of the sublingual microcirculation using sidestream dark field imaging. After image acquisition, the perfused boundary region (PBR), an inverse parameter for red blood cell (RBC) penetration into the ESL, was automatically calculated. Microvascular perfusion was assessed by RBC filling and capillary density. Concentrations of circulating glycocalyx components were determined by enzyme-linked immunosorbent assay. Results: ADPKD patients showed a significantly larger PBR compared with healthy controls (2.09 ± 0.23 µm versus 1.79 ± 0.25 µm; P < .001). This was accompanied by significantly lower RBC filling (70.4 ± 5.0% versus 77.9 ± 5.4%; P < .001) as well as a higher valid capillary density {318/mm2 [interquartile range (IQR) 269-380] versus 273/mm2 [230-327]; P = .007}. Significantly higher plasma concentrations of heparan sulphate (1625 ± 807 ng/ml versus 1329 ± 316 ng/ml; P = .034), hyaluronan (111 ng/ml [IQR 79-132] versus 92 ng/ml [82-98]; P = .042) and syndecan-1 were noted in ADPKD patients compared with healthy controls (35 ng/ml [IQR 27-57] versus 29 ng/ml [23-42]; P = .035). Conclusions: Dimensions and integrity of the ESL are impaired in ADPKD patients. Increased capillary density may be a compensatory mechanism for vascular dysfunction to ensure sufficient tissue perfusion and oxygenation.

9.
Nephrol Dial Transplant ; 38(7): 1623-1635, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36423335

RESUMO

BACKGROUND: Ketogenic dietary interventions (KDI) have been shown to be effective in animal models of polycystic kidney disease (PKD), but data from clinical trials are lacking. METHODS: Ten autosomal dominant PKD (ADPKD) patients with rapid disease progression were enrolled at visit V1 and initially maintained a carbohydrate-rich diet. At V2, patients entered one of the two KDI arms: a 3-day water fast (WF) or a 14-day ketogenic diet (KD). At V3, they resumed their normal diet for 3-6 weeks until V4. At each visit, magnetic resonance imaging kidney and liver volumetry was performed. Ketone bodies were evaluated to assess metabolic efficacy and questionnaires were used to determine feasibility. RESULTS: All participants [KD n = 5, WF n = 5; age 39.8 ± 11.6 years; estimated glomerular filtration rate 82 ± 23.5 mL/min/1.73 m2; total kidney volume (TKV) 2224 ± 1156 mL] were classified as Mayo Class 1C-1E. Acetone levels in breath and beta-hydroxybutyrate (BHB) blood levels increased in both study arms (V1 to V2 average acetone: 2.7 ± 1.2 p.p.m., V2 to V3: 22.8 ± 11.9 p.p.m., P = .0006; V1 to V2 average BHB: 0.22 ± 0.08 mmol/L, V2 to V3: 1.88 ± 0.93 mmol/L, P = .0008). Nine of 10 patients reached a ketogenic state and 9/10 evaluated KDIs as feasible. TKV did not change during this trial. However, we found a significant impact on total liver volume (ΔTLV V2 to V3: -7.7%, P = .01), mediated by changes in its non-cystic fraction. CONCLUSIONS: RESET-PKD demonstrates that short-term KDIs potently induce ketogenesis and are feasible for ADPKD patients in daily life. While TLV quickly changed upon the onset of ketogenesis, changes in TKV may require longer-term interventions.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Ácido 3-Hidroxibutírico/uso terapêutico , Acetona/uso terapêutico , Progressão da Doença , Taxa de Filtração Glomerular , Rim/patologia , Projetos Piloto , Doenças Renais Policísticas/patologia , Rim Policístico Autossômico Dominante/tratamento farmacológico
10.
Clin Pharmacol Ther ; 112(4): 808-816, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538648

RESUMO

Therapy of molybdenum cofactor (Moco) deficiency has received US Food and Drug Administration (FDA) approval in 2021. Whereas urothione, the urinary excreted catabolite of Moco, is used as diagnostic biomarker for Moco-deficiency, its catabolic pathway remains unknown. Here, we identified the urothione-synthesizing methyltransferase using mouse liver tissue by anion exchange/size exclusion chromatography and peptide mass fingerprinting. We show that the catabolic Moco S-methylating enzyme corresponds to thiopurine S-methyltransferase (TPMT), a highly polymorphic drug-metabolizing enzyme associated with drug-related hematotoxicity but unknown physiological role. Urothione synthesis was investigated in vitro using recombinantly expressed human TPMT protein, liver lysates from Tpmt wild-type and knock-out (Tpmt-/- ) mice as well as human liver cytosol. Urothione levels were quantified by liquid-chromatography tandem mass spectrometry in the kidneys and urine of mice. TPMT-genotype/phenotype and excretion levels of urothione were investigated in human samples and validated in an independent population-based study. As Moco provides a physiological substrate (thiopterin) of TPMT, thiopterin-methylating activity was associated with TPMT activity determined with its drug substrate (6-thioguanin) in mice and humans. Urothione concentration was extremely low in the kidneys and urine of Tpmt-/- mice. Urinary urothione concentration in TPMT-deficient patients depends on common TPMT polymorphisms, with extremely low levels in homozygous variant carriers (TPMT*3A/*3A) but normal levels in compound heterozygous carriers (TPMT*3A/*3C) as validated in the population-based study. Our work newly identified an endogenous substrate for TPMT and shows an unprecedented link between Moco catabolism and drug metabolism. Moreover, the TPMT example indicates that phenotypic consequences of genetic polymorphisms may differ between drug- and endogenous substrates.


Assuntos
Metiltransferases , Cofatores de Molibdênio , Animais , Genótipo , Humanos , Metiltransferases/fisiologia , Camundongos , Camundongos Knockout
11.
Kidney360 ; 3(12): 2048-2058, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36591351

RESUMO

Background: Imaging-based total kidney volume (TKV) and total liver volume (TLV) are major prognostic factors in autosomal dominant polycystic kidney disease (ADPKD) and end points for clinical trials. However, volumetry is time consuming and reader dependent in clinical practice. Our aim was to develop a fully automated method for joint kidney and liver segmentation in magnetic resonance imaging (MRI) and to evaluate its performance in a multisequence, multicenter setting. Methods: The convolutional neural network was trained on a large multicenter dataset consisting of 992 MRI scans of 327 patients. Manual segmentation delivered ground-truth labels. The model's performance was evaluated in a separate test dataset of 93 patients (350 MRI scans) as well as a heterogeneous external dataset of 831 MRI scans from 323 patients. Results: The segmentation model yielded excellent performance, achieving a median per study Dice coefficient of 0.92-0.97 for the kidneys and 0.96 for the liver. Automatically computed TKV correlated highly with manual measurements (intraclass correlation coefficient [ICC]: 0.996-0.999) with low bias and high precision (-0.2%±4% for axial images and 0.5%±4% for coronal images). TLV estimation showed an ICC of 0.999 and bias/precision of -0.5%±3%. For the external dataset, the automated TKV demonstrated bias and precision of -1%±7%. Conclusions: Our deep learning model enabled accurate segmentation of kidneys and liver and objective assessment of TKV and TLV. Importantly, this approach was validated with axial and coronal MRI scans from 40 different scanners, making implementation in clinical routine care feasible.Clinical Trial registry name and registration number: The German ADPKD Tolvaptan Treatment Registry (AD[H]PKD), NCT02497521.


Assuntos
Rim Policístico Autossômico Dominante , Humanos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Fígado/diagnóstico por imagem , Fígado/patologia , Redes Neurais de Computação
12.
J Clin Med ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615123

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disease. Patients at high risk of severe disease progression should be identified early in order to intervene with supportive and therapeutic measures. However, the glomerular filtration rate (GFR) may remain within normal limits for decades until decline begins, making it a late indicator of rapid progression. Kidney volumetry is frequently used in clinical practice to allow for an assessment of disease severity. Due to limited prognostic accuracy, additional imaging markers are of high interest to improve outcome prediction in ADPKD, but data from clinical cohorts are still limited. In this study, we examined cyst fraction as one of these parameters in a cohort of 142 ADPKD patients. A subset of 61 patients received MRIs in two consecutive years to assess longitudinal changes. All MRIs were analyzed by segmentation and volumetry of the kidneys followed by determination of cyst fraction. As expected, both total kidney volume (TKV) and cyst fraction correlated with estimated GFR (eGFR), but cyst fraction showed a higher R2 in a univariate linear regression. Besides, only cyst fraction remained statistically significant in a multiple linear regression including both htTKV and cyst fraction to predict eGFR. Consequently, this study underlines the potential of cyst fraction in ADPKD and encourages prospective clinical trials examining its predictive value in combination with other biomarkers to predict future eGFR decline.

13.
J Control Release ; 337: 258-284, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34293319

RESUMO

The coronavirus disease-19 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has taken the world by surprise. To date, a worldwide approved treatment remains lacking and hence in the context of rapid viral spread and the growing need for rapid action, drug repurposing has emerged as one of the frontline strategies in the battle against SARS-CoV2. Repurposed drugs currently being evaluated against COVID-19 either tackle the replication and spread of SARS-CoV2 or they aim at controlling hyper-inflammation and the rampaged immune response in severe disease. In both cases, the target for such drugs resides in the lungs, at least during the period where treatment could still provide substantial clinical benefit to the patient. Yet, most of these drugs are administered systemically, questioning the percentage of administered drug that actually reaches the lung and as a consequence, the distribution of the remainder of the dose to off target sites. Inhalation therapy should allow higher concentrations of the drug in the lungs and lower concentrations systemically, hence providing a stronger, more localized action, with reduced adverse effects. Therefore, the nano-reformulation of the repurposed drugs for inhalation is a promising approach for targeted drug delivery to lungs. In this review, we critically analyze, what nanomedicine could and ought to do in the battle against SARS-CoV2. We start by a brief description of SARS-CoV2 structure and pathogenicity and move on to discuss the current limitations of repurposed antiviral and immune-modulating drugs that are being clinically investigated against COVID-19. This account focuses on how nanomedicine could address limitations of current therapeutics, enhancing the efficacy, specificity and safety of such drugs. With the appearance of new variants of SARS-CoV2 and the potential implication on the efficacy of vaccines and diagnostics, the presence of an effective therapeutic solution is inevitable and could be potentially achieved via nano-reformulation. The presence of an inhaled nano-platform capable of delivering antiviral or immunomodulatory drugs should be available as part of the repertoire in the fight against current and future outbreaks.


Assuntos
COVID-19 , RNA Viral , Antivirais/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Nanomedicina , SARS-CoV-2
14.
Redox Biol ; 38: 101800, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271457

RESUMO

Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency are two rare genetic disorders that are caused by impairment of the mitochondrial enzyme sulfite oxidase. Sulfite oxidase is catalyzing the terminal reaction of cellular cysteine catabolism, the oxidation of sulfite to sulfate. Absence of sulfite oxidase leads to the accumulation of sulfite, which has been identified as a cellular toxin. However, the molecular pathways leading to the production of sulfite are still not completely understood. In order to identify novel treatment options for both disorders, the understanding of cellular cysteine catabolism - and its alterations upon loss of sulfite oxidase - is of utmost importance. Here we applied a new detection method of sulfite in cellular extracts to dissect the contribution of cytosolic and mitochondrial glutamate oxaloacetate transaminase (GOT) in the transformation of cysteine sulfinic acid to sulfite and pyruvate. We found that the cytosolic isoform GOT1 is primarily responsible for the production of sulfite. Moreover, loss of sulfite oxidase activity results in the accumulation of sulfite, H2S and persulfidated cysteine and glutathione, which is consistent with an increase of SQR protein levels. Surprisingly, none of the known H2S-producing pathways were found to be upregulated under conditions of sulfite toxicity suggesting an alternative route of sulfite-induced shift from oxidative to H2S dependent cysteine catabolism.


Assuntos
Sulfito Oxidase , Sulfitos , Glutamatos , Oxaloacetatos , Sulfito Oxidase/genética , Transaminases/genética
15.
PLoS One ; 15(11): e0238612, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33137122

RESUMO

BACKGROUND: Rapid and extensive testing of large parts of the population and specific subgroups is crucial for proper management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and decision-making in times of a pandemic outbreak. However, point-of-care (POC) testing in places such as emergency units, outpatient clinics, airport security points or the entrance of any public building is a major challenge. The need for thermal cycling and nucleic acid isolation hampers the use of standard PCR-based methods for this purpose. METHODS: To avoid these obstacles, we tested PCR-independent methods for the detection of SARS-CoV-2 RNA from primary material (nasopharyngeal swabs) including reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific high-sensitivity enzymatic reporter unlocking (SHERLOCK). RESULTS: Whilst specificity of standard RT-LAMP assays appears to be satisfactory, sensitivity does not reach the current gold-standard quantitative real-time polymerase chain reaction (qPCR) assays yet. We describe a novel multiplexed RT-LAMP approach and validate its sensitivity on primary samples. This approach allows for fast and reliable identification of infected individuals. Primer optimization and multiplexing helps to increase sensitivity significantly. In addition, we directly compare and combine our novel RT-LAMP assays with SHERLOCK. CONCLUSION: In summary, this approach reveals one-step multiplexed RT-LAMP assays as a prime-option for the development of easy and cheap POC test kits.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Pneumonia Viral/diagnóstico , RNA Viral/metabolismo , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Técnicas de Laboratório Clínico , Infecções por Coronavirus/virologia , Humanos , Nasofaringe/virologia , Pandemias , Pneumonia Viral/virologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2 , Sensibilidade e Especificidade
16.
Invest Radiol ; 55(4): 217-225, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31876626

RESUMO

OBJECTIVE: Autosomal dominant polycystic kidney disease (ADPKD) is a chronic progressive disorder with a significant disease burden leading to end-stage renal disease in more than 75% of the affected individuals. Although prediction of disease progression is highly important, all currently available biomarkers-including height-adjusted total kidney volume (htTKV)-have important drawbacks in the everyday clinical setting. Thus, the purpose of this study was to evaluate T2 mapping as a source of easily obtainable and accurate biomarkers, which are needed for improved patient counseling and selection of targeted treatment options. MATERIALS AND METHODS: A total of 139 ADPKD patients from The German ADPKD Tolvaptan Treatment Registry and 10 healthy controls underwent magnetic resonance imaging on a clinical 1.5-T system including acquisition of a Gradient-Echo-Spin-Echo T2 mapping sequence. The ADPKD patients were divided into 3 groups according to kidney cyst fraction (0%-35%, 36%-70%, >70%) as a surrogate marker for disease severity. The htTKV was calculated based on standard T2-weighted imaging. Mean T2 relaxation times of both kidneys (kidney-T2) as well as T2 relaxation times of the residual kidney parenchyma (parenchyma-T2) were measured on the T2 maps. RESULTS: Calculation of parenchyma-T2 was 6- to 10-fold faster than determination of htTKV and kidney-T2 (0.78 ± 0.14 vs 4.78 ± 1.17 minutes, P < 0.001; 0.78 ± 0.14 vs 7.59 ± 1.57 minutes, P < 0.001). Parenchyma-T2 showed a similarly strong correlation to cyst fraction (r = 0.77, P < 0.001) as kidney-T2 (r = 0.76, P < 0.001), the strongest correlation to the serum-derived biomarker copeptin (r = 0.37, P < 0.001), and allowed for the most distinct separation of patient groups divided according to cyst fraction. In contrast, htTKV showed an only moderate correlation to cyst fraction (r = 0.48, P < 0.001). These observations were even more evident when considering only patients with preserved kidney function. CONCLUSIONS: The rapidly assessable parenchyma-T2 shows a strong association with disease severity early in disease and is superior to htTKV when it comes to correlation with renal cyst fraction.


Assuntos
Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Dominante/diagnóstico por imagem , Rim Policístico Autossômico Dominante/patologia , Adulto , Biomarcadores , Progressão da Doença , Feminino , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
17.
J Clin Invest ; 127(12): 4365-4378, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106383

RESUMO

Molybdenum cofactor deficiency (MoCD) is an autosomal recessive inborn error of metabolism characterized by neurodegeneration and death in early childhood. The rapid and progressive neurodegeneration in MoCD presents a major clinical challenge and may relate to the poor understanding of the molecular mechanisms involved. Recently, we reported that treating patients with cyclic pyranopterin monophosphate (cPMP) is a successful therapy for a subset of infants with MoCD and prevents irreversible brain damage. Here, we studied S-sulfocysteine (SSC), a structural analog of glutamate that accumulates in the plasma and urine of patients with MoCD, and demonstrated that it acts as an N-methyl D-aspartate receptor (NMDA-R) agonist, leading to calcium influx and downstream cell signaling events and neurotoxicity. SSC treatment activated the protease calpain, and calpain-dependent degradation of the inhibitory synaptic protein gephyrin subsequently exacerbated SSC-mediated excitotoxicity and promoted loss of GABAergic synapses. Pharmacological blockade of NMDA-R, calcium influx, or calpain activity abolished SSC and glutamate neurotoxicity in primary murine neurons. Finally, the NMDA-R antagonist memantine was protective against the manifestation of symptoms in a tungstate-induced MoCD mouse model. These findings demonstrate that SSC drives excitotoxic neurodegeneration in MoCD and introduce NMDA-R antagonists as potential therapeutics for this fatal disease.


Assuntos
Sinalização do Cálcio , Cisteína/análogos & derivados , Neurônios GABAérgicos/metabolismo , Erros Inatos do Metabolismo dos Metais/metabolismo , Doenças Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Cisteína/metabolismo , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Células HEK293 , Humanos , Memantina/farmacologia , Erros Inatos do Metabolismo dos Metais/tratamento farmacológico , Erros Inatos do Metabolismo dos Metais/patologia , Camundongos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Compostos Organofosforados/farmacologia , Pterinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/metabolismo , Sinapses/patologia , Compostos de Tungstênio/toxicidade
18.
Biochem J ; 469(2): 211-21, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26171830

RESUMO

Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/tratamento farmacológico , Terapia de Reposição de Enzimas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Oxigênio , Sulfito Oxidase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Estabilidade Enzimática/genética , Células HEK293 , Heme/química , Heme/genética , Heme/metabolismo , Humanos , Peróxido de Hidrogênio , Camundongos , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/uso terapêutico , Oxigênio/química , Oxigênio/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Polietilenoglicóis/química , Sulfito Oxidase/genética , Sulfito Oxidase/metabolismo
19.
Amino Acids ; 47(1): 55-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25261132

RESUMO

Sulfur metabolism has gained increasing medical interest over the last years. In particular, cysteine dioxygenase (CDO) has been recognized as a potential marker in oncology due to its altered gene expression in various cancer types. Human CDO is a non-heme iron-dependent enzyme, which catalyzes the irreversible oxidation of cysteine to cysteine sulfinic acid, which is further metabolized to taurine or pyruvate and sulfate. Several studies have reported a unique post-translational modification of human CDO consisting of a cross-link between cysteine 93 and tyrosine 157 (Cys-Tyr), which increases catalytic efficiency in a substrate-dependent manner. However, the reaction mechanism by which the Cys-Tyr cofactor increases catalytic efficiency remains unclear. In this study, steady-state kinetics were determined for wild type CDO and two different variants being either impaired or saturated with the Cys-Tyr cofactor. Cofactor formation in CDO resulted in an approximately fivefold increase in k cat and tenfold increase in k cat/K m over the cofactor-free CDO variant. Furthermore, iron titration experiments revealed an 18-fold decrease in K d of iron upon cross-link formation. This finding suggests a structural role of the Cys-Tyr cofactor in coordinating the ferrous iron in the active site of CDO in accordance with the previously postulated reaction mechanism of human CDO. Finally, we identified product-based inhibition and α-ketoglutarate and glutarate as CDO inhibitors using a simplified well plate-based activity assay. This assay can be used for high-throughput identification of additional inhibitors, which may contribute to understand the functional importance of CDO in sulfur amino acid metabolism and related diseases.


Assuntos
Coenzimas/metabolismo , Cisteína Dioxigenase/química , Cisteína Dioxigenase/metabolismo , Dipeptídeos/metabolismo , Ferro/metabolismo , Domínio Catalítico , Coenzimas/química , Cisteína Dioxigenase/genética , Dipeptídeos/química , Humanos , Cinética , Oxirredução , Ligação Proteica
20.
Neurobiol Dis ; 67: 88-96, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24561070

RESUMO

Gephyrin is a postsynaptic scaffolding protein, essential for the clustering of glycine and γ-aminobutyric acid type-A receptors (GABAARs) at inhibitory synapses. An impairment of GABAergic synaptic inhibition represents a key pathway of epileptogenesis. Recently, exonic microdeletions in the gephyrin (GPHN) gene have been associated with neurodevelopmental disorders including autism spectrum disorder, schizophrenia and epileptic seizures. Here we report the identification of novel exonic GPHN microdeletions in two patients with idiopathic generalized epilepsy (IGE), representing the most common group of genetically determined epilepsies. The identified GPHN microdeletions involve exons 5-9 (Δ5-9) and 2-3 (Δ2-3), both affecting the gephyrin G-domain. Molecular characterization of the GPHN Δ5-9 variant demonstrated that it perturbs the clustering of regular gephyrin at inhibitory synapses in cultured mouse hippocampal neurons in a dominant-negative manner, resulting in a significant loss of γ2-subunit containing GABAARs. GPHN Δ2-3 causes a frameshift resulting in a premature stop codon (p.V22Gfs*7) leading to haplo-insufficiency of the gene. Our results demonstrate that structural exonic microdeletions affecting the GPHN gene constitute a rare genetic risk factor for IGE and other neuropsychiatric disorders by an impairment of the GABAergic inhibitory synaptic transmission.


Assuntos
Proteínas de Transporte/genética , Epilepsia Generalizada/genética , Éxons/genética , Neurônios GABAérgicos/metabolismo , Proteínas de Membrana/genética , Deleção de Sequência , Sinapses/metabolismo , Adulto , Feminino , Humanos , Masculino , Linhagem , RNA Mensageiro/metabolismo , Fatores de Risco , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...